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ABSTRACT 

This paper studies the question of which manifolds fiber over the circle in 
dimensions four and five. 

When is a m a p / :  M"--~  S j homotopic  to the projection of a fiber bundle? 

Stallings gave a complete answer for n = 3 [St]. For n ~> 6, Browder  and Levine 

[BL] solved the problem assuming ¢rtM = Z; Farrell [Fa] solved the general 

case. In this paper  we make some observations about  the missing dimensions. 

First of all, the results have all been independent  of the category considered. 

One can see directly that a smooth manifold which topologically fibers, fibers 

smoothly at least for n > 5. For n = 5 one can consider the product  of a circle 

and the E~ + E8 manifold constructed by Freedman [Frl]. Though this has a 

smooth structure, it is not a smooth fibration in view of the work of Donaldson 

[D]. t* One sees that fibering 5-manifolds is closely related to existence problems 

for 4-manifolds. The four-dimensional case is also related to difficult s- 

cobordism problems. Consequently,  we prefer  to work topologically. 

One result is that Farrell 's theorem is valid for 5-manifolds whose fundamen-  

tal groups do not grow too quickly [Fr2] (see also [FrQ]). Felix Hsu has proven 

this in his 1985 Michigan Ph.D. thesis by adapting the old proof  to utilize 

Freedman 's  new low-dimensional handlebody theory. We sketch a different 

proof based on high dimensional "split t ing" ideas that leads to a result on 

"A-splitting" four-dimensional homotopy  equivalences with small fundamental  

groups (see [FrT]). 

' Partially supported by an NSF Postdoctoral Fellowship. 
" A. Ranicki has pointed out to me that C. Kearton has given an example of a smooth knotted S ~ 

in S 5 that is not smoothly fibered as a consequence of [D]. 
Received July 22, 1985 and in revised form May 22, 1986 
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Our second result is a four-dimensional failure, or rather, two failures of 

different sorts. The first is a manifold which is simple-homotopy equivalent to 

S I × RP 3 but does not fiber since there is no submanifold homotopy equivalent 

to RP 3 embedded in it in the homologically correct fashion. (There is a manifold 

of the right homology either by the construction or by A-splitting.) The proof of 

this uses a recent result of Casson to the effect that any homotopy three sphere 

has vanishing Rochlin invariant. 

The second failure is due to Cappell and Shaneson [CS] and can be described 

as the result of glueing together the boundary components of their fake 

s-cobordism of a quaternionic space form to itself. There a single fiber is 

obviously visible, but there is no 1-parameter family of fibers. The difficulty in 

the proof comes in showing that no other splitting of the 4-manifold along a 

"fiber" yields a product. 
There are no known obstructions to smoothing either example.* Both 

examples also display three dimensional aspects. The first, of course, relies on 

Casson's theorem on the nonexistence of certain three manifolds; the second on 

the nonexistence of exotic diffeomorphisms of three dimensional quaternionic 

space forms. In [We1] other four-dimensional "anomalies" related to three- 

dimensional phenomena are presented; these regard cutting and pasting, and a 

paucity of invariant codimension one submanifolds for diffeomorphisms of 

four-manifolds homotopic to the identity. 

Section I gives our positive results and Section 2 the negative ones. These 

sections are independent. It is a pleasure to thank Syivain Cappell and Julius 
Shaneson for their friendly conversations and to also thank Reinhardt Schultz 

for pointing out an error in an early version of this paper. I am also grateful to 

the referee for many suggestions that have improved the exposition. 

1. The positive results 

We prove the following: 

THEOREM I. A n  n-dimensional homotopy equivalence can be topologically 

A-split, for n >- 4, provided all fundamental groups involved are "smal l" ,  if and 

only if it can be split after crossing with CP 4 # S 3 x S ~ # S 3 × S 5. I f  n > 5, A-split 

can be replaced with split. 

The condition of "smallness" on a group is one on the growth of the number 

' See note added in proof. 
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of words  that  can be descr ibed as a p roduc t  of a given n u m b e r  of genera tors .  

Poly- (finite or  cyclic) groups  are all " smal l " .  

The  p roof  is a vers ion of the high d imensional  me thods  of [B], [Wa]. T h e  case 

t rea ted  there  is es tabl ished even for  smoo th  4-manifolds  in [FrT].  

Two  c o m m e n t s  should be  made .  First, Cappel l  [Cp] has given a very  comple t e  

analysis of the high d imensional  splitting p rob l em,  so T h e o r e m  1 combines  with 

his work  to give useful low-dimensional  informat ion .  Second,  a direct  p roof  of  

this t h e o r e m  would  give a new proof  of (the known cases of) topological  surgery,  

but  we instead deduce  T h e o r e m  1 f rom the results of [Fr2] [FrQ].  

We  recall the definit ion of (A-) splitting. The  setup is this. G iven  is a h o m o t o p y  

equiva lence  f :  M"  ~ X f rom a manifold  to a Poincar~ complex  and a decom-  

posi t ion X = XIUvX2 where  (X~, Y) are Poincar6 pairs.  (It is also possible  to 

consider  the case where  Y does  not  separa te ,  as is re levant  for  deduc ing  the 

Farrel l  f ibration theorem.*)  W e  say f is split or  A-split if f Ir 'v  is a h o m o t o p y  

equiva lence  or a Z[~r~Y] h o m o l o g y  equiva lence ;  f is A-spli t table if f is 

h o m o t o p i c  to a (A-) split map.  If n =>6, f is spl i t table if and only if it is 

A-spli t table.  I do not  know whe the r  this is t rue for  n = 5 (if 7r~ Y is small,  then  it 

is); it is not  t rue for  n - - 4  in light of the results of Sect ion 2. 

We write down the details in the more  difficult case of four-manifolds .  

PROOF OF THEOREM 1. All L -g roups  are L " - g r o u p s .  A key  point  is that  

surgery on three  manifo lds  A-works.  Tha t  is, solvable  surgery p rob l ems  give rise 

to manifolds  A-homology  equiva len t  to their  targets .  Also,  one  can realize the 

act ion of L4(Tr~M 3) if one is willing to obta in  a A-equiva lent  manifo ld  at the 

o ther  end.  (See [CS2] for  an in terpre ta t ion . )  The  reason  is s imply that  all 

embedd ings  can be p roduced  by genera l  posi t ion,  and homology  calculat ions go 

exac t ly  the  s a m e  way  as in [Wa]. tt C o n s e q u e n t l y ,  four  d i m e n s i o n a l  p r o b l e m s  

wi th  smal l  7]~ 1 a n d  wi th  b o u n d a r y  can  be  so lved ,  bu t  the  m a p  on  the  b o u n d a r y  

will on ly  be  a A-equ iva l ence .  

t To fiber g: M-~ S ~, consider the natural homotopy equivalence of M to the mapping torus of 
the monodromy of the infinite cyclic cover as a first step. Splitting along the infinite cyclic cover 
produces a "prefiber". Cutting along this prefiber results in a self h-cobordism which must be shown 
to be a product. 

tt A simple consequence is that it is now possible to compute, say, the topological concordance 
classes of, say, free Z, actions on homology 3-spheres. Then Wall's desuspension theorem for odd 
order cyclic group actions remains valid, that is, using the double suspension theorem, every Z2~ ÷, 
action on S 5 is of the form S~*E ~ where Z2k+~ acts freely on S j and on ~3 and the action of Y is 
well-defined up to concordance. For more information and some of the implications of this see 
[We2]. This example is implicit in the example of Theorem 2. 
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Notice that the homotopy class of f determines obstructions in L4(~rIX, lr, Y) 

determined by the obstruction of f Ir-'~×,.Y~. If f (A-) splits, obstructions vanish. 

Since f x 1 w splits, periodicity implies these obstructions vanish. Cobord these 

problems to solutions M~ via U~. See Fig. 1. 
Now try to cobord M x I t_J UI t.J U2 to a homotopy equivalence rel M x 0 t_J 

MI t_J M2. The obstruction lies in Ls(~r,X, ~r~ Y). It is only well defined modulo 

the images of Ls(~rIX,, 7rl Y). However, modulo those images the obstruction 

does vanish, again by periodicity. So act by Ls( 'n ' tX/ ,  71"1 Y) on the M~ to obtain a 

vanishing obstruction and then surger. This produces an h-cobordism of M to a 

A-split map. A last application of periodicity guarantees (after some more 

modifications now by the action of a Whitehead group) that the torsion vanishes, 

so that, since 1riX is small, it is a product thus yielding a homotopy. Q.E.D. 

REMARKS. The same method can be used to establish a A-Browder-Livesay 

desuspension theory for one-sided submanifolds. Julius Shaneson pointed out 
that the methods of the next section show that splitting also fails in this case. 

(Think about fake RP"s.)  

I do not know the status of the A-splitting results of this section smoothly. 

They are valid if ~'~ Y = 7r, X, according to [FrT]. 

2. The negative results 

Consider the Brieskorn homology sphere ~(5,7, 11) with its natural free 

involution. One can check that/~(E) ~ 0. Now surger circles normally generating 

1r~(E) in S 1 x (E/Z2). An easy application of [Fr2] shows that this manifold has a 
decomposition as W # n(S2x $2), where W 4 is simple homotopy equivalent to 

S t x RP 3. It is easy to check that W satisfies the hypotheses (besides dimension!) 

of Farreil's theorem, i.e., that the infinite cyclic cover is homotopy equivalent to 
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a finite complex and an element of the Whitehead group (which vanishes) is zero. 

Nonetheless: 

THEOREM 2. W does not.fiber over S t. Moreover, there is no "prefibering", i.e., 
no M3--~ W is equivalent to the inclusion of the homotopy .fiber of W---~ S ~. 

We show in fact that there is no three-manifold N 3 such that the infinite cyclic 

cover I£¢ ~-N × R. (Such a manifold would of course be a mod 2 homology 

sphere.) Thus none of the cyclic covers fiber. 

PROOF OF THEOREM 2. We prove the result as a consequence of the following 

facts. A topological spin manifold is by definition just a manifold whose first two 

Stiefel-Whitney classes are zero. 
(1) If M 3 is a mod 2 homology 3-sphere with free involution then M/Z2 is spin 

cobordant to RP -~ by a cobordism which maps to RP 3. 

(2) The signature of the 2-fold cover of any such topological spin cobordsim is 

determined mod 16. 

(3) The signature is just Ix(M). 
A straightforward calculation yields [Rp3:G/Top]Z2 detected by a codimen- 

sion one Arf invariant. The maps M/Zz--->RP 3 and id: Rp3---*RP 3 are both 

homology equivalences and so are cobordant. This establishes (1). As for (2), let 

V~ and V2 be two cobordisms. Since M is a rood 2 homology sphere, and there 

are maps to RP 3, V~Ut~p~uM/z2~ V2 is a topological spin 4-manifold 

sign V, - sign re2 = sign( V, t_J V_,) 

= 2 sign Vt LI V2 

=-0 mod 16, 

since the signature of any topological spin manifold is divisible by 8. (3) is trivial 

as one can take a smooth spin cobordism and use this to compute Ix. 

Suppose now that W = M ×R.  By construction V¢ contains E/Z,_ as a 

submanifold homology equivalent to /4. Since E/Z2 is compact one can find a 

copy of M "far out"  in the R-direction that does not intersect it. These 

submanifolds bound a Z[Z2]-homology h-cobordism. So (1), (2), and (3) imply 

Ix(E)=Ix(/Q). M is, of course, a homotopy 3-sphere and this contradicts 

Casson's theorem. Q.E.D. 

Now we consider X obtained by glueing the boundary components of the 

Cappell-Shaneson fake s-cobordism [CS1] together. 
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THEOREM 3. X prefibers but does not .fiber 

In fact, the infinite cyclic cover  2( is ($3/Q2 ~) x R. (The two-fold cover  is 

s '  x 

PROOF OF THEOREM 3. A pref iber  is given by the obvious  $3/02 k in X. The  

p roof  in [CS1] shows that  the result  of cut t ing X along any $3/Q2 ~ gives a 

nontr ivial  s -cobord i sm,  not a product .  T h e  issue is the possible exis tence of some  

o the r  M 3 pref iber  for  which this is not true.  (Af te r  all, we do not  unders tand  the 

d i t t eomorph i sms  of such a hypothet ica l  M.) Tak ing  an odd-fold  cover  if 

necessary,  one can assume that  M and $3/Q2 ~ are disjoint.  Cons ider  Fig. 2. O n e  

knows that  A U B = M x I but  that  B U A # 53/Q2 k x I. Thus  B U A U B = B. 

Howeve r ,  h -cobord i sms  with small fundamen ta l  g roup  can be seen to be  

invert ible using [Fr2] (e.g., B is, since (B U A )  x I = M × D2). So B U A is in 

fact trivial, giving a contradict ion.  Q . E . D .  

Note added in proof. Cappel l  and Shaneson  (Bulletin of the A m e r i c a n  

Ma thema t i ca l  Society,  1987) have  now given smoo th  coun te r example s  to the 

s - cobord i sm t h e o r e m  in d imens ion  four.  These  lead to smoo th  four -d imens iona l  

nonf iber ing manifolds  as in T h e o r e m  3. 

REFERENCES 

[B] W. Browder, Embedding l-connected mani[olds, Bull. Am. Math. Soc. 72 (1960), 225-231. 
[BL] W. Browder and J. Levine, Fibering manifolds over a circle, Comm. Math. Helv. 40 (1966), 

153-160. 
[Cp] S. Cappell, A splitting theorem for mani[olds, Inven. Math. 33 (1976), 69-170. 
[Cs] A. Casson, A Z-invariant [or homology 3-spheres, to appear. 
[CSI] S. Cappell and J. Shaneson, On 4-dimensional s-cobordisms, J. Differ. Geom., to appear. 
[CS2] S. Cappell and J. Shaneson, The codimension two placement problem and homology 

equivalent manifolds, Ann. of Math. 99 (1974), 277-348. 
[D]S. Donaldson, An application of gauge theory to [our dimensional topology, J. Differ. Geom. 

18 (1983), 279-315. 
[Fa] F. T. Farrell, The obstruction to.[ibering a mani[old over a circle, Indiana Univ. Math. J. 21 

(1971), 315-346; also Proc. ICM (Nice) 2 (1970), 69-72. 



Vol. 59, 1987 ON FIBERING MANIFOLDS 7 

[Frl] M. Freedman, The topolgoy of four-dimensional manifolds, J. Differ. Geom. 17 (1982), 
357-454. 

[Fr2] M. Freedman, The disk theorem for 4-dimensional manifolds, Proc. ICM (Warsaw) (1982), 
647-663. 

[FrQ] M. Freedman and F. Quinn, Topology of 4-manifolds, in preparation, to appear as an 
Annals of Math. Studies. 

[FrT] M. Freedman and L. Taylor, A-splitting &manifolds, Topology 16 (1977), 181-184. 
{HI F. Hsu, Ph.D. thesis, University of Michigan, 1985. 
[St] J. Stallings, On fibering certain 3-manifolds, in Topology of 3-Manifolds, Prentice Hall, 

1962, pp. 95-100. 
[Wa] C. T. C. Wall, Surgery On Compact Manifolds, Academic Press, 1970. 
[Well S. Weinberger, The Novikov conjecture and low-dimensional topology, Comm. Math. 

Helv. 58 (1983), 355-364. 
[We2] S. Weinberger, Desuspension of Actions, in preparation. 


