ISRAEL JOURNAL OF MATHEMATICS, Vol. 59, No. 1, 1987

ON FIBERING FOUR- AND FIVE-MANIFOLDS

BY

SHMUEL WEINBERGER'
Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel; and
Department of Mathematics, University of Chicago, Chicago, Illinois, USA

ABSTRACT

This paper studies the question of which manifolds fiber over the circle in
dimensions four and five.

When is a map f: M" — S’ homotopic to the projection of a fiber bundle?
Stallings gave a complete answer for n =3 [St]. For n = 6, Browder and Levine
[BL] solved the problem assuming M = Z; Farrell [Fa] solved the general
case. In this paper we make some observations about the missing dimensions.

First of all, the results have all been independent of the category considered.
One can see directly that a smooth manifold which topologically fibers, fibers
smoothly at least for n > 5. For n =5 one can consider the product of a circle
and the Eg+ E, manifold constructed by Freedman [Frl]. Though this has a
smooth structure, it is not a smooth fibration in view of the work of Donaldson
[D]." One sees that fibering 5-manifolds is closely related to existence problems
for 4-manifolds. The four-dimensional case is also related to difficult s-
cobordism problems. Consequently, we prefer to work topologically.

One result is that Farrell’s theorem is valid for 5-manifolds whose fundamen-
tal groups do not grow too quickly [Fr2] (see also [FrQ]). Felix Hsu has proven
this in his 1985 Michigan Ph.D. thesis by adapting the old proof to utilize
Freedman’s new low-dimensional handlebody theory. We sketch a different
proof based on high dimensional “splitting” ideas that leads to a result on
“A-splitting” four-dimensional homotopy equivalences with small fundamental
groups (see [FrT)).

' Partially supported by an NSF Postdoctoral Fellowship.

+ .y . .
A. Ranicki has pointed out to me that C. Kearton has given an example of a smooth knotted S’

in §* that is not smoothly fibered as a consequence of [D].
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Our second result is a four-dimensional failure, or rather, two failures of
different sorts. The first is a manifold which is simple-homotopy equivalent to
S' x RP’ but does not fiber since there is no submanifold homotopy equivalent
to RP?> embedded in it in the homologically correct fashion. (There is a manifold
of the right homology either by the construction or by A-splitting.) The proof of
this uses a recent result of Casson to the effect that any homotopy three sphere
has vanishing Rochlin invariant.

The second failure is due to Cappell and Shaneson [CS] and can be described
as the result of glueing together the boundary components of their fake
s-cobordism of a quaternionic space form to itself. There a single fiber is
obviously visible, but there is no 1-parameter family of fibers. The difficulty in
the proof comes in showing that no other splitting of the 4-manifold along a
“fiber” yields a product.

There are no known obstructions to smoothing either example.” Both
examples also display three dimensional aspects. The first, of course, relies on
Casson’s theorem on the nonexistence of certain three manifolds; the second on
the nonexistence of exotic diffeomorphisms of three dimensional quaternionic
space forms. In [Wel] other four-dimensional ‘“‘anomalies” related to three-
dimensional phenomena are presented; these regard cutting and pasting, and a
paucity of invariant codimension one submanifolds for diffeomorphisms of
four-manifolds homotopic to the identity.

Section 1 gives our positive results and Section 2 the negative ones. These
sections are independent. It is a pleasure to thank Sylvain Cappell and Julius
Shaneson for their friendly conversations and to also thank Reinhardt Schultz
for pointing out an error in an early version of this paper. I am also grateful to
the referee for many suggestions that have improved the exposition.

1. The positive resuits
We prove the following:

THEOREM 1. An n-dimensional homotopy equivalence can be topologically
A-split, for n = 4, provided all fundamental groups involved are “small”, if and
only if it can be split after crossing with CP*# §*x S*# §*x §°. If n =5, A-split
can be replaced with split.

The condition of “smallness” on a group is one on the growth of the number

' See note added in proof.
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of words that can be described as a product of a given number of generators.
Poly- (finite or cyclic) groups are all *“‘small”.

The proof is a version of the high dimensional methods of [B], [Wa]. The case
treated there is established even for smooth 4-manifolds in [FrT].

Two comments should be made. First, Cappell [Cp] has given a very complete
analysis of the high dimensional splitting problem, so Theorem 1 combines with
his work to give useful low-dimensional information. Second, a direct proof of
this theorem would give a new proof of (the known cases of) topological surgery,
but we instead deduce Theorem 1 from the results of [Fr2] [FrQ].

We recall the definition of (A-) splitting. The setup is this. Given is a homotopy
equivalence f: M" — X from a manifold to a Poincaré complex and a decom-
position X = XUy X; where (X, Y) are Poincaré pairs. (It is also possible to
consider the case where Y does not separate, as is relevant for deducing the
Farrell fibration theorem.”) We say f is split or A-split if f ’/"y is a homotopy
equivalence or a Z[w Y] homology equivalence; f is A-splittable if f is
homotopic to a (A-) split map. If n =6, f is splittable if and only if it is
A-splittable. I do not know whether this is true for n =5 (if m Y is small, then it
is); it is not true for n =4 in light of the results of Section 2.

We write down the details in the more difficult case of four-manifolds.

ProOF OF THEOREM 1. All L-groups are L"-groups. A key point is that
surgery on three manifolds A-works. That is, solvable surgery problems give rise
to manifolds A-homology equivalent to their targets. Also, one can realize the
action of L,(m M) if one is willing to obtain a A-equivalent manifold at the
other end. (See [CS2] for an interpretation.) The reason is simply that all
embeddings can be produced by general position, and homology calculations go
exactly the same way as in [Wa].'t Consequently, four dimensional problems
with small 7, and with boundary can be solved, but the map on the boundary
will only be a A-equivalence.

' To fiber g: M— S’ consider the natural homotopy equivalence of M to the mapping torus of
the monodromy of the infinite cyclic cover as a first step. Splitting along the infinite cyclic cover
produces a “prefiber”. Cutting along this prefiber results in a self h-cobordism which must be shown
to be a product.

ft A simple consequence is that it is now possible to compute, say, the topological concordance
classes of, say, free Z, actions on homology 3-spheres. Then Wall’s desuspension theorem for odd
order cyclic group actions remains valid, that is, using the double suspension theorem, every Z., .,
action on S* is of the form §'* X" where Z.., acts freely on S’ and on 3, and the action of 3 is
well-defined up to concordance. For more information and some of the implications of this see
[We2]. This example is implicit in the example of Theorem 2.
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Fig. 1.

Notice that the homotopy class of f determines obstructions in Ly(m X, 7 Y)
determined by the obstruction of f |,"(x.-‘y). If f (A-) splits, obstructions vanish.
Since f % 1y splits, periodicity implies these obstructions vanish. Cobord these
problems to solutions M; via U.. See Fig. 1.

Now try to cobord M x I U U, U U, to a homotopy equivalence rel M x0U
M, U M. The obstruction lies in L(m X, m Y). It is only well defined modulo
the images of Lsy(m X, m Y). However, modulo those images the obstruction
does vanish, again by periodicity. So act by Ls(m X, 7 Y) on the M; to obtain a
vanishing obstruction and then surger. This produces an h-cobordism of M to a
A-split map. A last application of periodicity guarantees (after some more
modifications now by the action of a Whitehead group) that the torsion vanishes,
so that, since X is small, it is a product thus yielding a homotopy. Q.E.D.

RemaRrks. The same method can be used to establish a A-Browder-Livesay
desuspension theory for one-sided submanifolds. Julius Shaneson pointed out

that the methods of the next section show that splitting also fails in this case.
(Think about fake RP*s.)

I do not know the status of the A-splitting results of this section smoothly.
They are valid if m Y = 7, X, according to [FrT).

2. The negative resuits

Consider the Brieskorn homology sphere %(5,7,11) with its natural free
involution. One can check that u () # 0. Now surger circles normally generating
m(2) in S' X (3/Z;). An easy application of [Fr2] shows that this manifold has a
decomposition as W # n(S? x S?), where W* is simple homotopy equivalent to
$' x RP. It is easy to check that W satisfies the hypotheses (besides dimension!)
of Farrell’s theorem, i.e., that the infinite cyclic cover is homotopy equivalent to
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a finite complex and an element of the Whitehead group (which vanishes) is zero.
Nonetheless:

THEOREM 2. W does not fiber over S'. Moreover, there is no “prefibering™, i.e.,
no M*— W is equivalent to the inclusion of the homotopy fiber of W — S'.

We show in fact that there is no three-manifold N* such that the infinite cyclic
cover W= N XR. (Such a manifold would of course be a mod 2 homology
sphere.) Thus none of the cyclic covers fiber.

ProoF OF THEOREM 2. We prove the result as a consequence of the following
facts. A topological spin manifold is by definition just a manifold whose first two
Stiefel-Whitney classes are zero.

(1) If M"is a mod 2 homology 3-sphere with free involution then M/Z, is spin
cobordant to RP* by a cobordism which maps to RP".

(2) The signature of the 2-fold cover of any such topological spin cobordsim is
determined mod 16.

(3) The signature is just u(M).

A straightforward calculation yields [RP’: G/Top]Z, detected by a codimen-
sion one Arf invariant. The maps M/Z,—RP’ and id: RP’—RP® are both
homology equivalences and so are cobordant. This establishes (1). As for (2), let
V, and V, be two cobordisms. Since M is a mod 2 homology sphere, and there
are maps to RP?, V\Ugp'omz, V- is a topological spin 4-manifold

sign V, —sign V, =sign(V, U V-)
=2sign V,U V,
=0 mod 16,

since the signature of any topological spin manifold is divisible by 8. (3) is trivial
as one can take a smooth spin cobordism and use this to compute u.
Suppose now that W =M XR. By construction W contains %/Z, as a
submanifold homology equivalent to H. Since X/Z, is compact on¢ can find a
copy of M “far out” in the R-direction that does not intersect it. These
submanifolds bound a Z[Z,]-homology h-cobordism. So (1), (2), and (3) imply
w()=u(M). M is, of course, a homotopy 3-sphere and this contradicts
Casson’s theorem. Q.E.D.

Now we consider X obtained by glueing the boundary components of the
Cappell-Shaneson fake s-cobordism [CS1] together.
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Fig. 2.

THEOREM 3. X prefibers but does not fiber.

In fact, the infinite cyclic cover X is (S*/Qx)XR. (The two-fold cover is
S' X (8 Qx).)

PrOOF OF THEOREM 3. A prefiber is given by the obvious $*/Qx in X. The
proof in [CS1] shows that the result of cutting X along any $*/Q gives a
nontrivial s-cobordism, not a product. The issue is the possible existence of some
other M” prefiber for which this is not true. (After all, we do not understand the
diffeomorphisms of such a hypothetical M.) Taking an odd-fold cover if
necessary, one can assume that M and S$*/Q;+ are disjoint. Consider Fig. 2. One
knows that A U B =M X I but that BU A# §°/Qxx 1. Thuu BUAUB =B.
However, h-cobordisms with small fundamental group can be seen to be
invertible using [Fr2] (e.g., B is, since (BU A)XI=MxD?. So BUA is in
fact trivial, giving a contradiction. Q.E.D.

Note added in proof. Cappell and Shaneson (Bulletin of the American
Mathematical Society, 1987) have now given smooth counterexamples to the
s-cobordism theorem in dimension four. These lead to smooth four-dimensional
nonfibering manifolds as in Theorem 3.
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